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A method of solving transient wave problems with mixed boundary conditions for multilayered media (l-31 is generalized to 
problems in which the continuity breaks down. Unlike existing results [l, 4,5], obtained for the case of the propagation of only 
harmonic perturbations from the initial instant of time, the space-time structure of the wave fields in the case of pulsed generation 
modes is investigated by an asymptotic analysis of the solution of a system of Wiener-Hopf type functional equations. The 
conditions for weak wave effects to arise for transient waves, due to the layered structure of semi-infinite media, are analysed. 
0 2001 Elsevier Science Ltd. All rights reserved. 

Consider a two-layer packet of elastic media of constant thickness h (h = h, + h2), bounded in the 
direction of the horizontal plane-parallel boundaries. We will investigate the nature of the wave fields 
excited at the initial instant of time t = 0 by a pulse breakdown in the continuity in the half-plane D at 
the interface of the layers (delamination) 
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Here (x, z) is a Cartesian rectangular system of coordinates with origin at the interface of the media z 
= 0, pj, hi, y, and hi are the density, Lame parameters and the thickness of the jth layer, and Pi, vj, Ap 
and Av are the components of the stress tensor (oj and rj are the normal and tangential stresses), and the 
displacement vector and their jumps, respectively. We assume that the material obeys Hooke’s law, while 
the stresses Pi on the edges of the breakdown in continuity in the region D are known (and consequently, 
also the jumps Ap in (2) and the external forces f). We will use the zero initial conditions (3). 

The method of Fourier and Laplace integral transformations with respect to the variables x and t 
with parameters a and s enables us to reduce problem (l)-(3) to a system of Wiener-Hopf type 
functional equations 
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where E is a band of regularity in the complex plane a, common to all the functions+in ($), conJainin8 
the real axis, &, is the abscissa of convergence of the Laplace transformation, and S-, T-, AW-, AU- 
are the transforms of the functions cr, 2, Aw, Au in the interface plane of the layers (z = 0). The super- 
script plus (minus) corresponds to the functions indicated, defined for x > 0 (X c 0), and everywhere 
henceforth denotes the regularity of their transforms in the upper half-plane or lower half-plane 
(E u {a: 1Im a c 0)) as a function of the complex variable a. 

For uniquely solvable initial-boundary-value problem (l)-(3), G reen’s functions (4) in transform space 
are unique, analytical and even with respect to the set of variables a and s with asymptotic behaviour 

K, G = O(l a I), Ka,Gc=O(l); la)+=, ~=const 

For.a two-layer packet of media, when there are no surface forces (F = 0), the specific form of these 
functions was determined previously [4], but in view of the complexity of the expressions they are not 
reproduced here. Below, when constructing the solution we will only present the structure of the most 
necessary of these. 

As is well known, outside the general regularity band E, Green’s functions have a denumerable set 
of zeros and poles, which are the wave numbers defining the dispersion properties of the composite 
medium considered. In particular, for these we will introduce the notation 

a=ai(s). a=r$(s), K(a;,s)= K-'(T\~,s)= 0 (5) 

Im{a~,n~l>O, Im Ia;, rl, I< 0, ResS&,>O 

To fix our ideas, the wave numbers will henceforth be assumed to be numbered in order of increase 
in their moduli. 

The function factorization method, generalized to the case of non-stationary problems [3,4], enables 
us to present the solution of system (4) for transforms of the required jumps in displacements in the 
region of the breakdown, and then, using the latter, we can also determine the wave fields in the whole 
waveguide. For example, in notation (4) and (5) we obtain the following expressions for the transformants 
of the stresses on the interface of the layers outside the defect 

T-(a,s)= L-(a,s)C --.SL S-(a,s)= K-(a,s)C z 
m a-q:' m a-a: 

L,-(a, s) = G--(a* s) 
G;(a, s) (6) 

s_ _ T-(a~,s)K,(a~,s>-S+(a~,~) 
n- 

(K-(a,+,sN' 

(K-(a:.S))'=~(K-(a,S)) 

Here the functions K, G, K. and Go are factorized in the form of a product (for example, 
K(a, s) = Kf(a, s)K+(a, s)), while the unknowns AW+(rlL, S) satisfy an infinite linear system (whence 
they can also be determined, for example, by the reduction method [3,4] or by the method of successive 
approximations [5]) 

A-AW=B (7) 

A = b,,,,lv AW =(AW+(q;,s)}, B={b,), m,n = 1,2.... 

Results (6) were obtained on the assumption that there are no shear loads on the discontinuity, while 
the normal loads are equal and opposite, i.e. {Tf, AT+, AS+} = 0. The latter assumptions do not reduce 
the generality of the discussion of the method of solution and the further qualitative analysis of the results. 
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Inverse Fourier and Laplace transformations, applied to the transforms of the solution obtained, 
enable us to determine the representations of the physical fields in integral form. Thus, for the stresses 
onthe boundary of the interface of the media (6) we have 

p(x, f) = ---&~~~t? dsTP_(a, s)eeia”da 
-ca 

P-(a,s)=(S-(a,s),T-(a,s)); x-co, z=O, 626,>0 

The quantities S- and T- are given in (6), and in view of the continuity of the wave fields outside the 
region D where the continuity breaks down we use the notation 

p(X, t)= Pj(X, f)(,=o=(<T(X, I), '5(x, r)}, i= 1,2: "O 

It can be shown that in relation (8) the inversion operators are commutative for a fairly wide class 
of perturbing factors, for example, pj(x, t) E CQ, + lDncl p 0)) are continuous and decreasing at infinity 
with respect to each of the variables separately (1x1+ CQ, t -+ -) or decreasing with respect to x and 
monochromatic with respect to time t. 

We will first evaluate the Fourier integral in relation (8), closing the contour of integration in the 
upper half-plane a, where the only poles of the integrands are n;(s) and P:(S) respectively. Using the 
theory of residues, we obtain for the stresses 

pW)=C q,(x,t), xco, z=o 
m 

(9) 
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For steady harmonic oscillations, the dispersion properties of a wide class of semi-infinite multilayered 
media (when s = -io, o > 0) have been widely investigated [l]. An analysis of non stationary problems 
for these media, using a generalization of the factorization method and representing the solution in 
the form of expansions in eigenfunctions, requires that the dispersion law a;, n,, , pz should be 
established over the whole range of complex-valued S. The necessary analytical extension of the 
dispersion relations into this region is made by establishing the natural physical requirement that the 
group velocities of the modes considered should be positive [3] 

cjm =(e;,)-’ >o, --aJ<oc+m (12) 

C,’ I {C;,l,(u))j=,.2 = elm = &,(-io)/hB 

As a characteristic example, we show in the figure, in dimensionless form, a number of first 
dispersion relations of real-valued (for s = -io) wave numbers a = ai (n = 1, 2,3,4) and the group 
velocities C = C,, corresponding to them. One can change from dimensionless quantities by using 
the characteristic values ~of the length h = hl + hz, the velocities of the longitudinal waves 
u = max ~jl (Ujl = 1 (hj -~j)/pj) and the density o = max pi. The results are given for dimension- 
less thicknesses of the layers Hj = hj/h (HI = 0.3, Hz = 0.7 and H = HI + Hz), relative densities 
pi* = pi/p (p* = 0.7, pT = l), frequency x, and velocities of the longitudinal waves ujp and transverse 
waves uj~, related to the dimensional quantities as follows: 

K ‘9 _ I),$=-- 
P2cLj 

U2l [ 1 pjCh2 +cI2) ’ 

j=1,2 

Using localization principles [6, 71 the main contributions to the value of integral (11) are made by 
the poles of the integrands and the singular points of the phase functions. By virtue of the pulsed nature 
of the delamination of the waveguide with respect to time, the amplitude functions in (11) can have 
poles only in the left half-plane Im s < 0, which do not reach the integration contour. In view of the 
their exponential attenuation with time their contributions are ignored. Hence, the main contribution 
to the asymptotic behaviour of integral (11) is made by the real-valued stationary phase points 

O=+W mn (n=1,2,...,N; aQP,(+W,,,y)/ao=o, (13) 
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Fig. 1 
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In the case of isolated single stationary points (13) using the stationary-phase method [6], we obtain 
from (11) 

q,(.Lr)=q, -s:+WI-9 (14) 

x mn = sign8ym, WY) = 
1, kt)ED, 
0, (x,r)e D,, 

0,(x, I) : (C,;,, r cl x 1-c C&r) 

y=rdxl=const, x,r+= 

For the extremum values of the group velocities we have used the following notation above 

CJLn = max tCJmk 1 
k=n-l,n 

c;mk = cjm<wik) 

where o>, are the boundary points of the interval Sz,: {o~,,_i S o,,, S WE,,} are the regions in which 
the n-th stationary point o,,, (13) exits. Hence, in representation (14) Sz,, defines the space-time region 
D,, filled with the n-th wave packet of the m-th mode for the j-th component of the wave field. The 
boundary values ok, in the interval S&, (with the exception, possibly, of ozO and wGN = -) are double 
stationary points of the corresponding phase functions 

am,(+o;,, y*)iau = a2q+0;,, y')iaw2 = 0 

Hence, as o,, + +w& (which occurs as 1x1+ C&,, . r) integral (11) has an asymptotic representation 
which differs from (14) and can be described by an asymptotic from using Airy functions [6, 71 or by 
the equivalent expansion [3] 

q,(x,r)=q;-q:+O(r+) (15) 

j=1,2 

0; (+io~n ) - Y’I = 0, t3~(+iC& ) = 0 

WY) = 
I (x,r)EDl Dw 
0, (x,r)e 0,” 

n : (1 x I -C&r1 c E 4 I} 

r+m, I-d-$‘,,~ (Y+Y*) 
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It can be seen from (9), (14) and (15) that the wave field generated by a time-pulsed form of partial 
delamination of the media, in space-time regions D,, is the superposition of wave packets, the amplitudes 

of which decrease with distance and attenuate with time (1x1 + ~0, t + -) as 1x1-%, t-‘/2, respectively. 
These waves reach their greatest amplitudes in the frontal zones D, (in the zone of the front 1x1-+ C,& 
and rear 1x1+ C&f of each packet). Here the amplitude factors decrease and attenuate more weakly, 

proportional to 1x1+3, t+. 
It should be noted that the formation of these wave structures (with a slower decrease in amplitudes) 

is a characteristic feature of multilayered media only and can be interpreted as the occurrence of “weak” 
wave effects for transient waves, generated by pulsed sources. 

1. 

2. 
3. 

4. 

5. 

6. 
7. 

REFERENCES 

VOROVICH, I. 1. and BABESHKO, V A., Dynamic Mixed Problems of the Theoty of Elasticity Non-classical Regions. Nauka, 
Moscow, 1979. 
PORUCHIKOV, V B., Methods of the Dynamic Theory of Elastici?. Nauka, Moscow, 1986. 
ZOLOTAREV, A. A., An approach to solving the integral equations of initial-boundary-value problems for multilayered 
media. Izv. Akad. Nauk SSSR. MTT, 1990,6, 30-35. 
ZAITSEV, I. A. and ZOLOTAREV, A. A., The space-time structure of the wave field in a two-layer medium with boundary 
friction. Prikl. Mat. Mekh., 1993, 57, 1, 172-179. 
ANDREICHIKOV, I. I. and ZOLOTAREV, A. A., The diffraction of waves by a thin inclusion in a two-layer waveguide. 
Akust. Zh., 1993, 39, 5, 773-781. 
FEDORYUK, M. V., The Method of Steepest Descent. Nauka, Moscow, 1977. 
FOCKE, J., Asimptotische Entwickhrngen mittels der Methode der stationaren Phase. Bee Verhandl. Siichs. Akad. W&s. Math- 
natrowiss. Kl. 1954, 101, 1-18. 

Translated by R.C.G. 


